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ABSTRACT 
A transport equation for the one-point velocity probability density function (pdf) of turbulence is derived, 
modelled and solved. The new pdf equation is obtained by two modeling steps. In the first step, a dynamic 
equation for the fluid elements is proposed in terms of the fluctuating part of Navier-Stokes equation. A 
transition probability density function (tpdf) is extracted from the modelled dynamic equation. Then the 
pdf equation of Fokker-Planck type is obtained from the tpdf. In the second step, the Fokker-Planck type 
pdf equation is modified by Lundgren's formal pdf equation to ensure it can properly describe the turbulence 
intrinsic mechanism. With the new pdf equation, the turbulent plane Couette flow is solved by the direct 
finite difference method coupled with dimensionality reduction and QUICKER scheme. A simple boundary 
treatment is proposed such that the near-wall solution is tractable and then no refined grid is required. 
The calculated mean velocity, friction coefficient, and turbulence structure are in good agreement with 
available experimental data. In the region departed from the center of flow field, the contours of isojoint 
pdf of V1 and V2 is very similar to that of experimental result of channel flow. These agreements show the 
validity of the new pdf model and the availability of the boundary treatment and QUICKER scheme for 
solving the turbulent plane Couette flow. 
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INTRODUCTION 

Most of the real turbulent shear flows can not be analyzed by the classical statistical turbulence 
theories due to the extreme complexity of the theories. Therefore, the studies on these problems 
are almost invoked to the phenomeno-logical theories such as one- or two-equation turbulence 
models. However, these models deal with only finite order correlation functions and thus many 
important statistics of turbulence fields can not be described completely. 

The similarities between the statistical behaviours of the velocity fluctuations of fluid elements 
in turbulence fields and those of molecules in a gas kinetic fields suggest the possibility of 
describing turbulence fields in terms of velocity probability density functions (pdf). The turbulence 
pdf methods intend to close a system rather than to close some finite moment equations. It 
provides a way to overcome the shortcomings of classical statistical turbulence theories and 
phenomenological turbulence models. 

Using Hopf's functional formulation2 and Navier-Stokes equation, Monin1 first derived a 
hierarchy of unclosed equations for n-point probability density function. At the same time, the 
n-point pdf equation was also derived by Lundgren3 using a more efficient method which 
produces the pdf equation directly from the Navier-Stokes equations. Subsequently, Lundgren4 

employed a Krook model to close the one-point pdf equation and applied it to solve several 
idealized problems. His model results has shown that the initial shape of the pdf was preserved 
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until the turbulence died out and, therefore, no relaxation was achieved. In 1981, Pope5 employed 
a pressure-strain closure technique and the Curl's model to close the one-point pdf equation. 
Although Pope's model contains pressure redistribution and relaxation effects, his model 
results would produce unrealistic shapes for the probability density function and not lead to a 
Gaussian as a limit of decaying fluctuations. 

Chung6 proposed his pdf model via a different way. Starting from a generalized Langevin 
equation, he constructed the transition probability density function of a fluid element in 
turbulence fields. With the transition probability density function, he obtained a Fokker-Planck 
type pdf equation. Haworth and Pope7,8 employed a more generalized Langevin equation9 to 
construct their generalized Langevin model. The major difference between Haworth and 
Pope's model and Chung's model is that there is a more flexible second order tensor Gij in 
Haworth and Pope's model than a scalar β in Chung's model. With different choices of Gij, the 
Haworth and Pope model can deduce a Reynolds-stress equation to fit specific requirement on 
the Reynolds-stress model. Bywater10 and Hong and Lin11 extended Chung's model for two or 
more significant degrees of freedom. Their results are too complicated to be applied to real 
turbulent flow problems. The most serious criticism on the pdf models derived from Langevin 
type equations is how the Langevin type equation can be used to describe turbulent flows. 

A new pdf model of turbulent flows was proposed by the present authors12,13. This pdf model 
was obtained by combining the two methods mentioned above to retain their advantages and 
avoid their shortcomings. It follows that this new pdf model can describe the statistical behaviour 
of turbulence fields more properly than the other models. 

Due to the highly dimensional characteristics of a probability density function, only a few 
turbulent flow problems were analyzed by the pdf method8,14-18. For the pdf of the velocity field, 
f(Xi, Vi) is a function of six independent variables. It is intractable to obtain the solution of a 
partial differential equation associated with six independent variables by a conventional numerical 
method such as the finite difference methods or the finite element methods. Moreover, the 
near-wall treatment is also difficult for the application of a pdf model. Numerical methods 
employed for solving pdf model with a solid-wall boundary can be only found in the works of 
Chung14 and Srinivasan et al.15 Srinivasan et al. used the pdf model proposed by Lundgren4 

to analyze the turbulent plane Couette flow under two types of boundary conditions. But the 
near-wall Reynolds-stress was overpredicted so that the Reynolds-stress profile was incorrect. 

In this paper, the modelling steps in the new pdf will be briefly described. Subsequently, this 
new pdf equation is solved for the turbulent plane Couette flow. A simple boundary treatment 
is used to obtain a reasonable near-wall solution without refined grids. Numerical results 
are obtained by the finite difference method with a QUICKER scheme19. In the present study, 
the mean velocity, turbulent energy, Reynolds-stress profiles, and friction coefficient will be 
examined. These results will be compared with the available experimental data of Reichardt20, 
Robertson et al.21, and El Telbany et al.22. 

STOCHASTIC MODEL 
This section will briefly describe the derivation of the pdf model. The modelling procedure was 
divided into two steps. 

First modelling step 
The dynamic equation governing the fluctuating momentum of fluid elements can be obtained 

by substracting Reynolds average equation from Navier-Stokes equation as: 
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or 

where ui stands for the instantaneous velocity, Ui for the fluctuating component of velocity ui, 
P for the fluctuation of static pressure, p and v for density and kinematic viscosity, respectively, 

< > represents ensemble mean. is the material derivative along the path of fluid 

elements. The last two terms in the right-hand side of (2) represent the pressure force and viscous 
force acting on the fluid elements, respectively. These two terms are mainly contributed from the 
small eddies (high frequency). If one does not want to go into the details of the dynamics of the 
smallest eddies, the only thing one can say about the smallest eddies is that they are very 
numerous and very irregular as to their strength and direction. Then the turbulent flows should 
be treated as a stochastic process and the pressure force and viscous force terms in (2) should 
be reformulated. In modelling the viscous effect and pressure fluctuation effect, the following 
assumptions were made: 
1 The stochastic fluctuations of momentum of fluid elements in turbulence fields is a Markov 

process. 
2 For the stochastic process of the high Reynolds number turbulence flows, the viscous force 

acting on the fluid elements is assumed in proportion to — / Τ1. Τ1 is the characteristic time 
of the turbulent flow and is assumed in proportion to k/ε. k and ε are the turbulent kinetic 
energy and its dissipation rate, respectively. 

3 The local fluctuating pressure acting on a fluid element can be treated as the sum of many 
small pressure forces. For high Reynolds number flows, the fluctuation of momentum due to 
the pressure force can be simulated as a Wiener process with a Gaussian distribution. 

According to (2) and assumptions 2 and 3, in an infinitesimal time interval dt, the dynamic 
equations for the change of momentum fluctuations of fluid elements are proposed as: 

where A(t) represents a Wiener process with Gaussian distribution. 
From assumption 1, there exists a transition probability density function Tr(t, X, V) connecting 

two neighbouring points in the velocity sample-space V. The stochastic process is completely 
defined by this transition probability density function. Let f(t, X, V) be the Eulerian probability 
density function of the velocity fluctuations in turbulence fields. Then f(t, X, V)dV is the 
probability of a fluid element falling between (t, X, V) and (t, X, V + dV) in the phase space. 
f(t + dt, X + dX, V) can be related to f(t, X, V —dV) by means of the transition probability 
density function Tr in the following way: 

The above equation can be transformed into a differential equation by expanding the various 
function in Taylor series for small value of Δt as: 

where ξVi, ξViVj and ξViVjVk are the transition moments of the first, second and third orders, 
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respectively, which are defined as: 

Once the transition probability density function is found, the pdf governing equation can be 
obtained by evaluating the transition moments. 

The transition probability density function was extracted from the stochastic solution of (3) as: 

where, 

Then the transition moments can easily be obtained as: 

Substituting (8) and (9) into (5), the pdf governing equation for the first step modelling was 
obtained as: 

where q is an undefined quantity generated from the transition moments. 
The Kolmogorov's hypothesis of local isotropy23 states that if the turbulence is locally isotropic 

one can express the following relation by properly choosing the time scale Τ, 

where ΔU = U(t), τη is the Kolmogorov's time scale, T0 is the characteristic time scale of mean 
turbulence fields, and C0 is a universal constant. 

In deriving the transition probability density function, the time interval was carefully chosen 
to fall between the scales of small eddies and large eddies. Therefore the time interval chosen 
should be of the same range as that in Kolmogorov's locally isotropic turbulence hypothesis 



A PDF DESCRIPTION OF TURBULENT PLANE COUETTE FLOW 761 

(Eq. (11)). Then one can expect that, 

or 
q = Cf2ε (12) 

By substituting (12) into (10), a Fokker-Planck type pdf equation gives: 

There are two unknown constants, Cf1 and Cf2, to be determined. To keep the correct energy 
dissipation rate in turbulent energy equation deduced from (13), one has: 

Second modelling step 
The stochastic model for velocity, (13), proposed by the first modelling step based on the 

assumptions 2 and 3 would render some turbulence characteristics lost. Therefore, in the 
second modeling step the formal pdf equation was employed to correct (13) to ensure that the 
final pdf model could contain the statistic information of turbulence fields more properly. 

The assoicated Reynolds-stress equation derived from the (13) are: 

Comparing (15) with the Reynolds-stress equation derived from Navier-Stokes equations (the 
pressure diffusion term and viscous work term in the Reynolds-stress equation are neglected), 
one obtained 

where Rmn is the pressure distribution term of Reynolds-stress equation. Equation (16b) is of 
the same form as the free interaction part of pressure distribution model proposed by Rotta24 

which is accepted by many investigators25-29. This implied the isotropic dissipation of small 
eddies and means that the assumed Wiener process of the pressure fluctuation effects on fluid 
elements only retains the free interaction part. In general, the mean strain rate vary slowly in 
flow fields and will produce a non-Gaussian distribution for the acting process of pressure force. 
Consequently, the forced interaction part of pressure should be added back to the pdf equation, (3). 

The assumption 2 of the previous subsection implies that the dissipation rate of turbulence 
fields is controlled by larger eddies. However, close to the wall the viscous effects become 
important. Accordingly, an additional term should be added to (3) to take care of the viscous 
effects. 

From the above analysis, a term, MP, representing the forced interaction effects of pressure 
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force and a term, MV, representing the viscous effects were added to (3) as: 

Owing to the additional terms in (17), the pdf equation derived from (17) will contain extra 
terms other than those in (13). Let's denote these terms as MPF and MVF corresponding to 
the effects of MP and MV, respectively. Thus the modified pdf equation can be expressed as: 

Comparing with the Lundgren's pdf equation, one tries to identify the MPF and MVF in (18). 
The Lundgren's pdf equation is: 

or 

where is the fine-grained density which is defined as: 

and the ensemble average of the fine-grained density is the pdf f, i.e., 

The last four terms in the right-hand side of (20) are obtained from the two unclosed terms in 
(19) which are due to the effects of the pressure and viscous forces, respectively. The first term 
involved derivatives with respect to Xi and Vi indicates the pressure diffusion transport. The 
second term involved derivative with respect to Vi only denotes the pressure redistribution of f 
in V space. The third term is the molecular transport of f in V space. The last term, 

would result in viscous dissipation, which can be obtained 

from being multiplied by UiUj and integrated over V space. 
It is obvious that MVF and MPF are related to the last four terms of (20). From the previous 

analysis the pdf transport equation obtained by the first modelling step keeps the effect of the 
last term of (20) under the condition of isotropic dissipation. In the present analysis, we let 

MVF = v take care of the molecular viscous effect on the transport of f which is 

significant in the near wall region. As mentioned previously, the Wiener process maintains the 
free interaction effect of pressure diffusion only, the term MPF should contain three parts, 

and 
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which denote the forced and free interaction of pressure diffusion term and the forced interaction 
of pressure redistribution term, respectively. 

To consider the pressure redistribution effect only and refer to the original form of the pressure 
redistribution terms, MPF was proposed as 

where C1
pqijkl and C2

qmli are the dimensionless six- and four-order tensors, respectively. Equation 
(23) shows that it contains both large and small eddy effects to simulate the pressure redistribution 
effects. 

The pressure redistribution term of Reynolds stress equation has been modelled by many 
investigators25-29. These models can be employed to evaluate C1

pqijkl and C2
qmli. The present 

analysis adopted the Naot et al.'s28 and the Reynolds'29 models of the forced interaction part 
of pressure redistribution term which was given as: 

The R(1)
mn derived from (23) is: 

By comparing (24) with (25), the simplest choise of C1
pqijkl and C2

qilj is: 

The final pdf equation becomes: 

Since — <UmUn> in (28) is the same as the turbulent energy production term in the 

turbulent kinetic energy equation, it is positive in most regions of flow fields. If it becomes 

negative, its magnitude is small in general. We expect that Cf2ε— <UmUn> would keep 

positive. In the model of Naot et al.28 the value of Cp ranged from 0.4 to 0.6. In order to ensure 
that no negative diffusivity occurs, the value of Cp is evaluated as follows, 

where α = 0.4 ~ 0.6 and 
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The constant Cf1 can also be determined from the Rotta's model as: 
Cf1 = 0.75 (30) 

The Cf2 can be determined from (14) as: 

pdf EQUATION FOR TURBULENT PLANE COUETTE FLOW 
Subsequently, a steady, incompressible turbulent plane Couette flow is solved by the new model 
derived above. The terms involved in ∂/∂t, ∂/∂X1, ∂/∂X3 are zero, and <u2> and <u3> are also 
zero. Thus (28) becomes, 

The distribution function f in (32) is four dimensionality. It is necessary to reduce the 
dimensionality of f for computer storage requirement. In Couette flow, (U1U2> decides the 
mean velocity profile and the probability distribution of V3 is less important than that of V1 
and V2. Thus (32) can be reduced to three-dimensionality by introducing a set of reduced 
distribution function as: 

By definition these distribution functions should satisfy the following constraints: 

The (34a) indicates that the total probability of finding a fluid element somewhere in X, over 
the whole V space is unity, while (34c), and (34d) represent that the mean of fluctuating components 
of velocity should be zero. 
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It is convenient to define the following dimensionless variables, 

where <u1>c is the average velocity of the upper and lower plates, and 2H is the width of the 
two plates. 

The final form of distribution function equations can be rewritten as (for convenience, the 
accents (~) will be dropped from the dimensionless equations): 

Having Equations (35), (36), and (37) one must employ a mean velocity equation and turbulent 
energy dissipation rate equation for a self-contained system. For turbulent plane Couette flow, the 
dimensionless equations of mean velocity and dissipation rate are: 

where Cε1, Cε2 and Cε are 1.44, 1.90 and 0.15, respectively, as suggested by Launder et al.27 
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NEAR-WALL TREATMENTS AND BOUNDARY CONDITIONS 
As mentioned previously, close to the wall the validity of the pdf model is the major obstruction 
in applications of pdf model. In general, the model equations for turbulence were derived under 
the conditions far from solid wall, whether in pdf modelling or phenomenological turbulence 
modelling. It is easy to handle this problem by using the phenomenological turbulence models 
because there are wall functions can be employed for calculations. However, in a pdf model no 
wall function can be applied. Under this condition we shall propose a feasible way for the 
applications of the pdf model near a solid wall. 

Srinivasan et al.15 used two kinds of methods to find f(X, V) at near-wall region. They used 
the zero gradient distribution function method and the Chapman-Enskog distribution function 
method to calculate pdf at the near-wall region where the Reynolds stress is constant and the 
turbulent energy is conservative. There are two main characteristics in turbulent plane Couette 
flow. One is that the Reynolds stress <U1U2> is a monotonic function in each symmetric flow 
domain. The minimum value occurs at the center of flow region. The other is that the turbulent 
energy has a peak value near the wall. The turbulent energy was not presented in Srinivasans' 
paper15. But the Reynolds stress they gave was overpredicted so that there exists a peak 
value near the wall. In the present paper a pdf model can be applied without confining to a constant 
shear stress and can be easily extended to more complicated problem. 

In order to take wall effects into consideration, one would modify the pdf equation to fit 
the near-wall conditions. In deriving the pdf model, it was assumed that the fluctuating momentum 
is proportional to Cf1Uiε/k. This implies that each momentum component exhibits the same 
characteristic relaxation rate. For the near-wall region this condition will be violated. So we 
assume the fluctuating momentum near the wall is proportional to 2Cf1UiΕ/3U'i2 where U'i is 
turbulence intensity defined as: 

and the value of Cf1 is fixed. 
From experimental data of turbulent energy balance30 one can find that the pressure transport 

effects neglected in this pdf model is important near the viscous sublayer. This term is of the 
same order as energy generation term in turbulent energy equation. Because the pressure transport 
effects are not well modelled, we lump this effect to the term in pdf equation corresponding to 
turbulent energy generation term of its moment equation by a factor C1p. Therefore, the governing 
pdf equation for the nearest wall point can be written as: 

and the corresponding equations for g, h, and j are, 
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where C1p is chosen as 2.0. 
Since the pressure redistribution terms are modelled by the Green function of the pressure 

equation, one must take the surface integration part solution near the wall region into account. 
Launder et al.27 have modified the corresponding terms in Reynolds-stress model. We will 
directly employ the results in the present calculations, i.e., 

The modified model should satisfy the boundary conditions (on the solid wall). For viscous flow, 
the no-slip condition must hold on the solid wall. One has, 

where Xiw represents the position of the wall. The corresponding boundary conditions for the 
reduced distribution function are: 

Since the mean velocity and turbulent energy dissipation rate are well predicted by using the 
phenomenological turbulence model, in the present calculations the law for near-wall velocity 
is adopted and the near-wall dissipation rate is assumed to be equal to the turbulent energy 
generation rate. Then the boundary conditions for mean velocity and dissipation rate equation are: 
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where K is the Karmman's constant (=0.42), E is the constant for wall roughness, <u1> + = <u1>/ur, 
and X+

2 = X2ur/v. In this case we chose E=9.0 for smooth wall. 

NUMERICAL METHOD 
For the calculation of fluid flow problems, there are a number of numerical methods, such as 
finite-difference methods31 or SIMPLE algorithm.)32. Among these methods, the first order 
upwind and hybrid difference schemes for the first derivative terms are most stable in high 
Reynolds number flow problems for stability consideration. Although the artificial viscosity will 
increase the diffusion effect, the turbulence fields will not be severely distorted in the calculations 
using the phenomenological turbulence model. In the present pdf model, however, the first and 
the second derivatives in velocity phase space strongly affect the turbulence energy. The artificial 
viscosity contributed from these derivatives will cause a nonphysical source in the turbulent energy 
equation. Thus, the high order scheme will be needed to reduce the artificial viscosity. Accordingly, 
for X2 space we chose hybrid scheme and for V1 and V2 spaces the QUICKER19 scheme (QUICK 
Extended and Revised form), which was obtained by rearranging the QUICK33 scheme to be 
more stable, is used. For the second derivative terms, the central difference is used. 

Equations (35), (36) and (37) can be casted into the general form as follows: 

where, 

<Φ> denotes the reduced distribution function and SΦ are the source terms of Φ-equation defined as: 

In general, the finite difference equation for (45) can be written as the following form19: 
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where Bs' are the coefficients contributed from the first- and second-derivative terms and Ss' 
are the source terms due to transforming the partial differential equations into their finite 
difference counterparts, not explicitly shown in (46). The subscript index x, u and v represent 
the X2, V1 and V2 coordinates, respectively. 

Now, the hybrid and QUICKER schemes are used for physical and velocity spaces, respectively. 
The corresponding Bs' and Ss' are: 
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where, 

and 
δ(.)i=(.)i-(.)i-1 

the bracket [|... |] denotes the function picking up the maximum of the values contained within it. 
Since the Reynolds stress in mean velocity equation acts as a source term like mean pressure 

force, the staggered grid is needed to keep from a checkerboard solution. 

RESULTS AND DISCUSSION 
In this section, the solution for g, h, and j are discussed for the turbulent plane Couette flow. 
The physical properties of flow field are extracted from the three reduced distribution functions. 
Since the distribution functions are calculated by the finite difference method without making 
any assumption about the functional dependence on turbulence velocities, the distribution 
function can give an insight into the turbulence mechanism. 

The solutions for h are nearly zero within the flow domain (which are within 10 - 1 3 order 
compared with j). From the definition of h, one can expect that the probability density function 
of V3.f(V3), is symmetric. We can find out this symmmetric character for f(V3) from Kreplin 
and Eckelmann's measurements34, Figure 1, which confirms the correctness of the present 
calculations. 

Figure 2 shows the mean velocity profiles computed in the present study and the experimental 
data of Reichardt20 and Robertson et al.21 The comparison of the present calculations with 
these experimental data shows a satisfactory agreement. 

Results for Reynolds stress <U1U2> normalized by square of frictional velocity are shown in 
Figure 3. The present results are in good agreement with the data of El Telbany et al.22 since 
the Reynolds stress distribution determines the mean velocity profile of turbulent plane Couette 
flow, this agreement confirms the consistency of the calculations and the measurements. 
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The profiles of the three root mean squares of velocity fluctuations, <U1U1>, <U2U2>1/2, 
and (U3U3>1/2, normalized by frictional velocity are shown in Figure 4. Theoretically, the 
calculated values of <U2U2>1/2 and <U3U3>1/2 using the present pdf model shall be of the same 
values in Couette flow. In the present calculations, <U2U2>1/2 and <U3U3>1/2 are calculated from 
two different equations, i.e. g and j . The difference between (U2U2>1/2 and <U3U3>1/2 in Figure 
4 is mainly due to the difference between the g and j difference equations. Nevertheless, it appears 
that the calculated values of the three rms velocity Auctions are somewhat too large compared 
with experimental data of El Telbany et al.22 and Johnson35. 

Figure 5 illustrates the results for skin friction coefficient, Cf, compared with experimental 
data of Robertson21, Johnson35, and El Telbany et al.22 Also Chung's results and Robertson's 
empirical expressions for predicting the skin friction coefficient are shown in this figure. The 
agreement between the present calculations and the empirical data is quite satisfactory. 

The most interesting things in the present study are the shapes of distribution function. Since 
there are not any assumption about the functional dependence of distribution functions, they 
can reveal the turbulence intrinsic mechanisms. Figures 6 and 7 show the probability density 
function of V1 and V2, respectively. The probability density of V2 have very little variation in 
the central core region, indicating that the boundary effects have slight influence on the velocity 
fluctuations normal to the wall, but more influence on the streamwise velocity fluctuations. 

Figure 8 shows the isojoint probability density contours of V1 and V2, while Figure 9 is the 
isojoint probability density contours for turbulent channel flow measured by Wallace and 
Brodkey36. The isojoint probability density contours in Figures 8 and 9 are very alike except 
the curves very near the central region. In channel flow the Reynolds stress tends to zero near 
the centre of the channel. Thus the isojoint probability density contour tends to a elliptic shape 
with V1 and V2 axis. In the present study, the Reynolds stress is constant in the central core of 
plane Couette flow. For symmetric requirement the isojoint probability density contour in the 
center of the two flat plate is elliptic with inclined major axes. 

Figure 10 shows the isoline plots of the joint probability densities of K1 and V2 multiplied by 
V1V2, i.e. V1V2·g(V1, V2). This value for each pair of V1 and V2 is a measure of the contribution 
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of that pair of Reynolds stress. By definition, V1 V2 ·g(V1, V2) must be zero on each axis, and the 
distribution of contributions to Reynolds stress is split into four quadrants. Obviously, the larger 
contribution are seen in those quadrants associated with ejection and sweep motion in bursting 
phenomena. 

Figure 11 shows the superimposed joint probability density distribution and the Reynolds 
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stress contribution distributions at different Y/H. It clearly shows that the most probable pairs 
of velocities do not coincide with the pairs of velocities that give the largest contribution to the 
Reynolds stress. The energetic motions which are the principal source of Reynolds stress occur 
relatively seldom. 
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CONCLUDING REMARKS 
The pdf turbulent model developed earlier by the present authors have been solved with the 
finite difference method to calculate the one-point statistical properties of a turbulent plane 
Coutte flow. For widely using first-order scheme such as upwind or hybrid scheme, the artificial 
diffusivity will cause some severe sources for turbulent energy. In order to avoid the artificial 
sources for turbulent energy a high order numerical scheme QUICKER was used to approach 
the first derivative terms of the velocity space. 

As one knows that the physical properties change rapidly near solid wall in turbulent flow, 
a simple boundary treatment was proposed such that the boundary conditions can be directly 
set on the solid wall and no refined grid is needed. 

The calculated mean velocity, Reynolds stress, and friction coefficient agree well with the 
available experimental data. The calculated isjoint probability density contours look very similar 
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to experimental results. These agreements show that the new pdf model can satisfactorily describe 
the statistics of real turbulence and the near-wall treatment and QUICKER scheme do work 
in pdf model applications. Besides this result, the contribution of velocity pair to Reynolds stress 
and its relationship to the joint probability density function were also discussed. It shows that 
the pdf methods are of more potential in revealing turbulence structure than phenomenological 
turbulence models. 
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